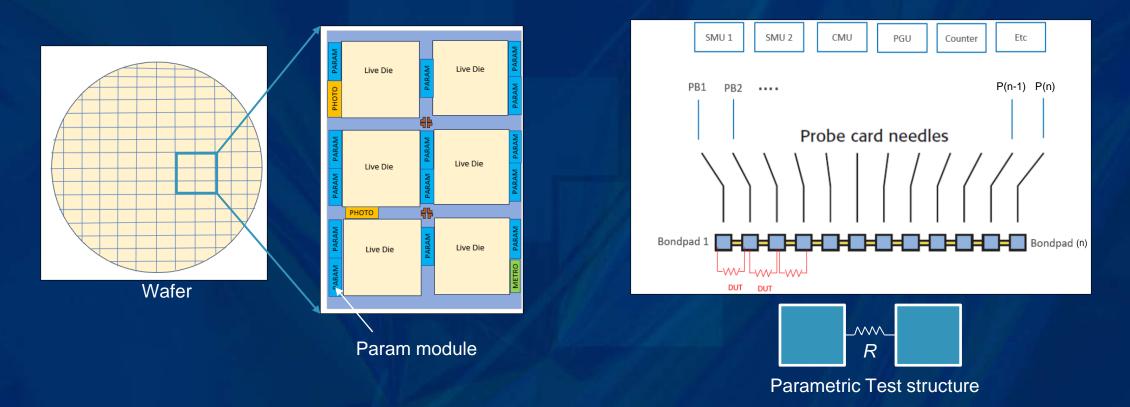
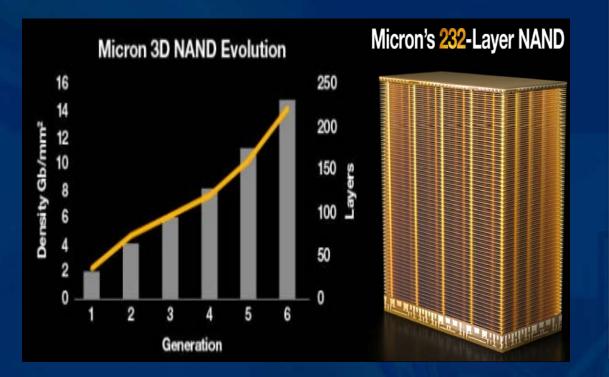
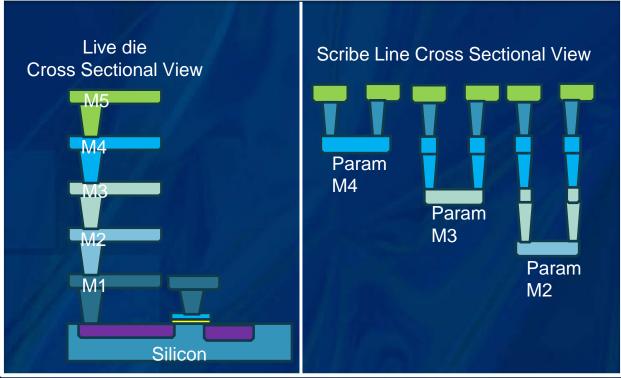


Application of Contact Resistance in Parametric Testing

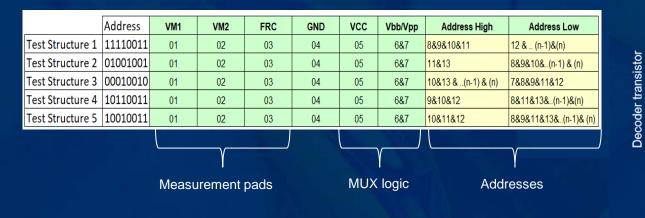

Iwan Putra Kurniawan Micron Semiconductor Asia, Singapore

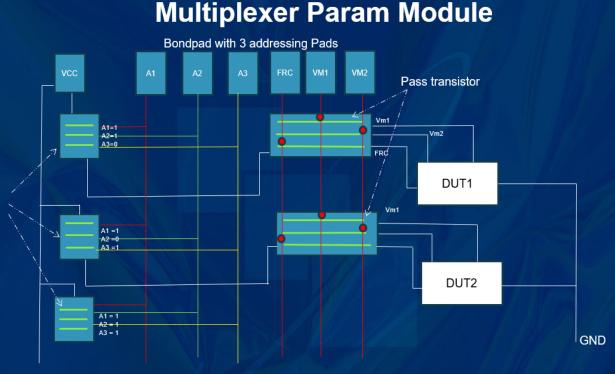

- Parametric Testing in NAND
- 3D NAND Evolution
- Testing 3D NAND Parametric with Multiplexer Module
- Challenges in Troubleshooting MUX Test Fails
- Contact Resistance (CRES) Test as option
- Limitation of CRES and hardware diagnostic
- Summary

Parametric Testing in NAND


- Functional test is electrical test to check good or bad die.
- Parametric test is electrical test to check internal structures.

3D NAND Evolution


Micron's 3D NAND Evolution: 232-Layer NAND


Hypothetical diagram, does not represent Micron design.

Testing 3D NAND Parametric with Multiplexer Module

Param Multiplexer (MUX) module could pack 10X~20X components vs standard module.

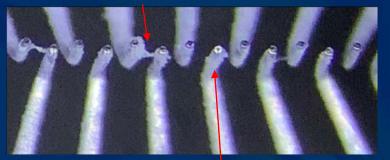
Typical Param MUX Module Test Structure Connection Table

Multiple test structures (DUT) connected using transistors to perform signal switching.

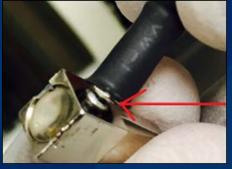
4th Annual SWTest Asia | Hsinchu, Taiwan, November 2-3, 2023

5

Problem Statement


- Param Multiplexer module poses challenge in diagnosing hardware issues.
 - It is not straight forward to isolate faulty hardware.
 - Common issues are highlighted and a technique to isolate is illustrated in this presentation.
- Why couldn't the hardware self diagnose itself?

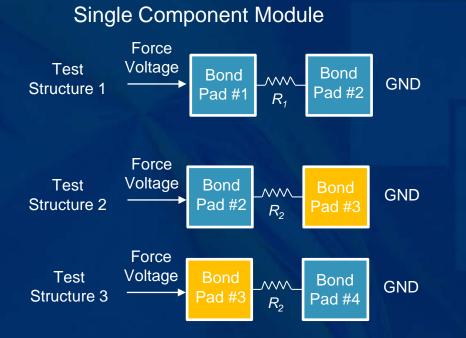
Common Hardware Issues


Probe marks misaligned/ out of bond pads

Dirty

Tip chip off

Loose connector



Faulty Equipment / Probecard

- Mechanical Contact:
- Probe marks misalign/out of pad
- Bent/burnt/deformed tips
- Electrical Contact:
- Tester Board faulty
- Loose / damaged connector

Pictures do not necessarily represent Micron's production condition

Challenges in Troubleshooting MUX Test Fails

- Commonality leads to Pin #3

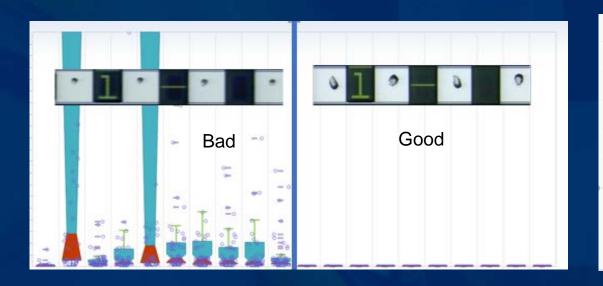
Multiplexer MUX ModuleTop ViewBondAnnoBondR₁... R₃BondPad #2R₄... R₆BondPad #2Pad #2

Typical Param MUX Test Structure Connection

	Address	VM1	VM2	FRC		GND	VCC	Vbb/Vpp	Address High	Address Low	
Test Structure 1	11110011	01	02		03	04	05	6&7	8&9&10&11	12 & (n-1)&(n)	
Test Structure 2	01001001	01	02		03	04	05	6&7	11&13	8&9&10&(n-1) & (n)	
Test Structure 3	00010010	01	02		03	04	05	6&7	10&13 &(n-1) & (n)	7&8&9&11&12	

- Unable to trace which Pin failing.

Contact Resistance Test as option

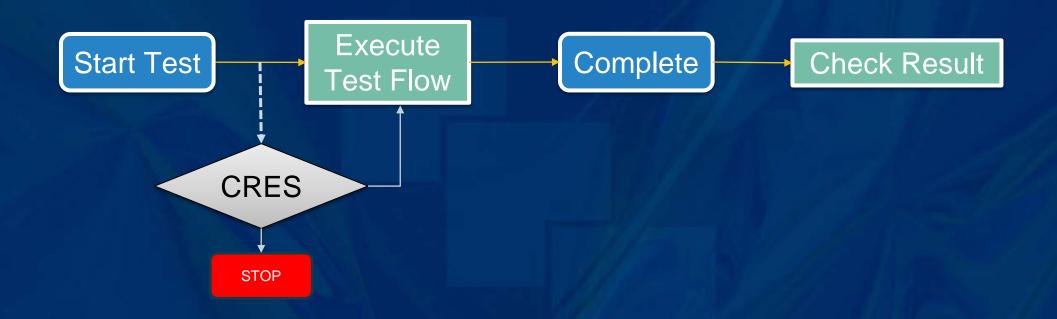

- One way is to use Contact Resistance (CRES).
- What is CRES?
 - Interface resistance between probecard lead tip and bondpad.

• Why CRES?

- Most Issues are contact related.
- Direct signal path measurement.
- How can it help us?

Example of CRES Application

Pin Board guide pin bent

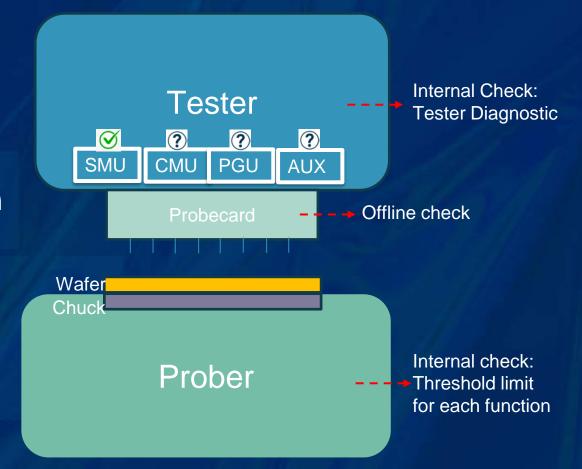

DETECTION

	-			est bod										er B lata			-			
PIN 1 – PIN 20	PIN 2 – PIN 3	PIN 4 – PIN 5	PIN 6- PIN 7	PIN81 – PIN 9	PIN 10 - PIN11	PIN 12 – PIN13	PIN 14 – PIN15	PIN 16 - PIN17	(u) ui – (l-1) – Din (n)	07 NIJ - 1 NIJ tid / PadPairs	PIN 2 – PIN 3	PIN 4 – PIN 5	PIN 6- PIN 7	PIN81 – PIN 9	PIN 10 – PIN11	PIN 12 – PIN13	PIN 14 – PIN15	PIN 16 – PIN17	Pin (n-1) – Pin (n)	

ISOLATION

Examples of Hardware Failure with CRES

Shift Left CRES


Shift Left / Preventive mindset at every run.

Saving capacity and avoiding bad data generation.

Limitation to CRES and Current Hardware Diagnostic

- **1.** CRES is not covering all tester resources and requires wafer.
- 2. Tester and Prober performed its own individual self-check, not as one single entity.

Need new capability from Industry: <u>Test Cell Integrated Self-Check</u>

Summary

- Multiplexing param test structures helped overcome scribe line real estate constraints.
- Inadvertently caused challenges in Parametric hardware troubleshooting.
- CRES is viable option but not the perfect solution.
- Future Test Cell need to be integrated, smart to self-diagnostic, always good when needed.

THANK YOU!

 Credits & Acknowledgement: Micron Technology : Dave Peterson, Randy Cleverly, Gary Southern, Salil Mujumdar, Low Kar Loong, Thiam Seng Yip.