

KGD 56G PAM4 HIGH SPEED TESTING FOR DATA CENTER PRODUCT – SETUP STABILITY IMPROVEMENT AT WAFER SORT

Wilson Yap Principal Product Engineer Marvell Technology Inc.

Agenda

- Overview in Wafer Sort High Speed Testing
- KGD Testing Hardware Overview
- Manufacturing Issues and Challenges
- Resolutions and Results

Overview in WS High Speed KGD Testing

 KGD (Known Good Die) - a form factor that eliminates assembly cost; at the same time optimizes
 Chip on Board (COB) module assembly process

- The twinning solution (HSIO card cage + Multilane Module) was introduced to enable high speed testing in wafer sort
- Applicable to products that require high speed testing at wafer sort with limited external loopback testing capability

KGD Test Hardware Overview

KGD High Speed Testing Configuration

ATE Output Sample

Example of Eye Diagram on ATE UI Report

ISITE

Example of Output Format on ATE UI Window

[site 1, pin:	1	******
[site 1, pin:	1	***************************************
[site 1, pin:	1	********
[site 1, pin:	1	***************************************
[site 1, pin:	1	********
[site 1, pin:	1	***************************************
[site 1, pin:	1	
faite 1, pin:	1	
faite 1, pin:	1	
faire 1, pin:	1	
faire 1, nint	1	
fairs nint	1	
fortes in print	1	
laice , pin:	1	
[site 1, pin:	1	
[site 1, pin:	1	
[site 1, pin:	1	······································
[site 1, pin:	1	
[site 1, pin:	1	***************************************
[site], pin:	1	
faite 1, pin:	1	
faire is nint	1	
faire pin:	1	
Lorde ., pans	1	
laice 1, pin:	1	
tarte , pin:	1	
[site 1, pin:	1	
[site 1, pin:	1	
[site 1, pin:	1	***************************************
[site 1, pin:	1	***************************************
[site 1, pin:	1	
[site 1, pin:	1	
faite 1, pin;	1	
faite 1, pint	1	
faite 1, pint	1	
faite 1, pint	i	
faire pin	1	
farce .' brut	1	
[site 1, pin:	1	
[site 1, pin:	1	
[site 1, pin:	1	
[site], pin:	1	
[site 1, pin:	1	
[site 1, pin:	1	***************************************
[site 1, pin:	1	***************************************
[site 1, pin:	1	
faite 1, pin:	1	
faite 1, pint	1	
faire 1, nint	1	
Lorce -, pan.	1	
Isice , pin:	1	
[sice 1, pin;	1	
[site 1, pin:	1	***************************************
[site 1, pin:	1	
[site 1, pin:	1	
[site 1, pin:	1	
[site 1, pin:	1	***************************************
[site 1, pin:	1	
[site], pin:	1	
faite 1, pin;	1	
[site], pin;	1	
fairs) nin:	1	
faire 1, pint	1	
fairs 1 pant	1	
toate i, pin:	1	
laite i, pin:	1	
Larce 1, pin:	1	
[site 1, pin:	1	
[sice 1, pin:	1	
[site 1, pin:	1	••
[site 1, pin:	1	
[site 1, pin;	1	
faite 1, pin;	1	
faire i. nint	1	
faite 1, pint	1	
faite 1, pint	1	
fairs) pint	1	
fairs 1 pint	:	
fairs i pint	:	
Larce 1, pin:	1	
larce 1, pin:	1	
[site 1, pin:	1	***************************************
[site 1, pin:	1	
[site 1, pin:	1	***************************************
[site 1, pin:	1	
[site 1, pin;	1	
faite 1, pin;	1	
faite 1, pint	1	
faite 1, pint	i	
faire 1, pint	1	
second of Passa	-	

ite 2	, pin:] Level2 (10)	[mV]	:
ite 2	, pin:] Level3 (11)	[mV]	:
ite 2	, pin:	1] Levell (01)	[mV]	:
ite 2	, pin:] Level0 (00)	[mV]	:
ite 2	, pin:] Max	[mV]	:
ite 2	, pin:		'] Min	[mV]	:
ite 2	, pin:] Peak To Peak	[mV]	:
ite 2	, pin:] Lower Eye Amplitude (AVlow)	[mV]	:
ite 2	, pin:] Middle Eye Amplitude (AVmid)	[mV]	:
ite 2	, pin:] Upper Eye Amplitude (AVupp)	[mV]	:
ite 2	, pin:		1 VEC	[mV]	:
ite 2	, pin:] Lower Eye Height (Vlow)	[mV]	:
ite 2	, pin:] Lower Eye Top (VlowTop)	[mV]	:
ite 2	, pin:	•] Lower Eye Base (VlowBase)	[mV]	
ite 2	, pin:] Middle Eye height (Vmid)	[mV]	:
ite 2	, pin:] Middle Eye Top (VmidTop)	[mV]	
ite 2	, pin:	•] Middle Eye Base (VmidBase)	[mV]	:
ite 2	, pin:] Upper Eye Height (Vupp)	[mV]	:
ite 2	, pin:] Upper Eye Top (VuppTop)	[mV]	:
ite 2	, pin:] Upper Eye Base (VuppBase)	[mV]	:
ite 2	, pin:] Lower Eye Width (Hlow)	[ps]	
ite 2	, pin:] Middle Eye Width (Hmid)	[ps]	:
ite 2	, pin:] Upper Eye Width (Hupp)	[ps]	:
ite 2	, pin:] Lower Eye skew (LowEyeSkew)	[ps]	:
ite 2	, pin:] Middle Eye skew (MidEyeSkew)	(ps]	
ite 2	, pin:] Upper Eye skew (UpperEyeSkew)	[ps]	:
ite 2	, pin:] Vrms	[mV]	:

- The communications between ATE and Multilane Modules were • established via the LAN
- Customized library was used •
- Measurement results were logged, and the eye diagram can be • displayed over the UI window

Setup Stability

Setup Stability

Probe Card Technology

Setup Stability

 \bullet

Full system setup involves
 multiple vendors

Probe Card Technology

Setup Stability

- Full system setup involves
 multiple vendors
- Poor planarity which can't be addressed by conventional setup check

Probe Card Technology

Setup Stability

- Full system setup involves
 multiple vendors
- Poor planarity which can't be addressed by conventional setup check
- No established / reference S.O.P

Probe Card Technology

Setup Stability

- Full system setup involves
 multiple vendors
- Poor planarity which can't be addressed by conventional setup check
- No established / reference S.O.P

Probe Card Technology

 Light / weak probe marks on RF pins

Setup Stability

- Full system setup involves
 multiple vendors
- Poor planarity which can't be addressed by conventional setup check
- No established / reference S.O.P

Probe Card Technology

- Light / weak probe marks on RF pins
- Probe mark uniformity issue

Setup Stability

- Full system setup involves multiple vendors
- Poor planarity which can't be addressed by conventional setup check
- No established / reference S.O.P

Probe Card Technology

- Light / weak probe marks on RF pins
- Probe mark uniformity issue
- IR drop induced failures

Setup Stability

- Full system setup involves
 multiple vendors
- Poor planarity which can't be addressed by conventional setup check
- No established / reference S.O.P

Probe Card Technology

- Light / weak probe marks on RF pins
- Probe mark uniformity issue
- IR drop induced failures
- Low yield after "x" touchdown

Setup Planarization Issue – Example of Failure

Poor Planarity After Docking

Each pin tolerance information			20 Hi	Highest pin : -7483		P/C Flatness : 56	
<u> </u>	20 1. 3		Lo	west pin	: -7539		(Unit: un
No.	Status	Diff. X	Diff. Y	Diff. Z	Height	Group	Area
0	PASS	0	0	1	-7483	0	N/A
1	PASS	-1	0	-3	-7539	1	N/A
2	PASS	0	-1.5	0	-7535	2	N/A
3	PASS	1	1	-3	-7495	3	N/A

Hardware Damages:

terre Toppe

Probe Card Stuck

Damaged SMPM Connectors

Low Yield & High Site-to Site Variation

Before Docking

Prober / Chuck Planarization

Tester Head Leveling

Tester Manipulator Adjustment

Before Docking

Prober Planarization

Tester Head Leveling

Tester Manipulator Adjustment

Before Docking

Prober Planarization

Tester Head Leveling

Tester Manipulator Adjustment

Unlock Tester Head

Guide Pins Height Standardization

After Docking

Before Docking

Prober Planarization

Tester Head Leveling

Tester Manipulator Adjustment

Unlock Tester Head

Guide Pins Height Standardization

Before Docking

Prober Planarization

Tester Head Leveling

Tester Manipulator Adjustment

Unlock Tester Head

Guide Pins Height Standardization After Docking Planarity VPG **Probe Card loading SOP**

Setup Planarization Issue Resolution Before Docking After Docking

Prober Planarization

Tester Head Leveling

Tester Manipulator Adjustment

Unlock Tester Head

Guide Pins Height Standardization

VPG – Verigy Planarization Gauge

	Twinning Frame	
		•
	VPG	•
	Chuck	•
		•
		- S 1
Prober		

- Very effective for prober without auto leveling feature
- Allows minor adjustment to be done on tester head rest planarity
- Reflects the actual planarity on a fully docked system
- Designed and calibrated by Advantest
- Adjustment was done based on 5 calibrated points on VPG unit to meet the expected planarity

4th Annual SWTest Asia | Hsinchu, Taiwan, November 2-3, 2023

VPG – Verigy Planarization Gauge

- Iwinning Frame

 VPG

 Chuck

 Chuck

 Prober

 Prober
 - Very effective for prober without auto leveling feature
 - Allows minor adjustment to be done on tester head rest planarity
 - Reflects the actual planarity on a fully docked system
 - Designed and calibrated by Advantest
 - Adjustment was done based on 5 calibrated points on VPG unit to meet the expected planarity

VPG – Verigy Planarization Gauge

I winning Frame

Chuck

Prober

VPG

View

Very effective for prober without auto leveling feature

 Allows minor adjustment to be done on tester head rest planarity

• Reflects the actual planarity on a fully docked system

Designed and calibrated by Advantest

 Adjustment was done based on 5 calibrated points on VPG unit to meet the expected planarity

- Multiple external forces / vectors are acting to the probe card during docking process
- These vectors came from various component ie. Tester head, prober, twinning frame, bridge beam, and probe cards

- Multiple external forces / vectors are acting to the probe card during docking process
- These vectors came from various component ie. Tester head, prober, twinning frame, bridge beam, and probe cards

- Multiple external forces / vectors are acting to the probe card during docking process
- These vectors came from various component ie. Tester head, prober, twinning frame, bridge beam, and probe cards

Probe Card Overview

Probe Card Issue and Challenges

Probe Needle Planarity	Contact Issue	Handling / Sustaining
Long setup time	Needle's IR drop	Cleaning Activation Routine
Irregular Probe marks	Performance degradation over time	
High Working		

OD

- Unoptimized alignment
- Risk of probing at edges of pad
- Uniformity issue
- Poor contact
- High overtravel
- Inconsistent overtravel across probe cards
- Risk of damaging circuit under pad

<u>Gen 1</u>

- Lower gram force
- High delta between OD1 and OD2
- Aggressive WOD required to get stable contact
- Inconsistent WOD across different probe cards

- Unoptimized alignment
- Risk of probing at edges of pad
- Uniformity issue
- Poor contact
- High overtravel
- Inconsistent overtravel across probe cards
- Risk of damaging circuit under pad

Gen 1

- Lower gram force
- High delta between OD1 and OD2
- Aggressive WOD required to get stable contact
- Inconsistent WOD across different probe cards

- Unoptimized alignment
- Risk of probing at edges of pad
- Uniformity issue
- Poor contact
- High overtravel
- Inconsistent overtravel across probe cards
- Risk of damaging circuit under pad
- <u>Gen 2</u> - Lower gram force
- High delta between OD1 and OD2
- Next generation of guide plate was introduced to strengthen probing
- Less aggressive WOD
- Inconsistent WOD across different probe cards

Gen 1

- Lower gram force
- High delta between OD1 and OD2
- Aggressive WOD required to get stable contact
- Inconsistent WOD across different probe cards

- Unoptimized alignment
- Risk of probing at edges of pad
- Uniformity issue
- Poor contact

Gen 2

OD2

probing

Lower gram force

High delta between OD1 and

Next generation of guide plate

was introduced to strengthen

Less aggressive WOD

different probe cards

Inconsistent WOD across

- High overtravel
- Inconsistent overtravel across probe cards
- Risk of damaging circuit under pad
 - <u>Gen 3</u>
 - Higher gram force
 - Small delta between OD1 and OD2
 - Consistent WOD recipe can be applied
 - Higher pin resistivity causing IR drop on power pins (40%
 - higher)

Unoptimized alignment

- Risk of probing at edges of pad
- Uniformity issue
- Poor contact
- High overtravel
- Inconsistent overtravel across probe cards
- Risk of damaging circuit under pad

<u>Gen 1</u>

- Lower gram force
- High delta between OD1 and OD2
- Aggressive WOD required to get stable contact
- Inconsistent WOD across different probe cards

- Lower gram force High delta between OD1 and
- OD2 Next generation of guide plate
- was introduced to strengthen probing
- Less aggressive WOD

<u>Gen 2</u>

 Inconsistent WOD across different probe cards

<u>Gen 3</u>

- Higher gram force
- Small delta between OD1 and OD2
- Consistent WOD recipe can be applied
- Higher pin resistivity causing IR drop on power pins (40%
- higher)

<u>Gen 4</u>

- Higher gram force
- Small delta between OD1 and OD2
- Consistent WOD recipe can be applied
- Lower pin resistivity

Unoptimized alignment

- Risk of probing at edges of pad
- Uniformity issue
- Poor contact
- High overtravel
- Inconsistent overtravel across probe cards
- Risk of damaging circuit under pad

<u>Gen 1</u>

- Lower gram force
- High delta between OD1 and OD2
- Aggressive WOD required to get stable contact
- Inconsistent WOD across different probe cards

- Lower gram force High delta between OD1 and
- OD2 Next generation of guide plate
- was introduced to strengthen probing
- Less aggressive WOD

<u>Gen 2</u>

 Inconsistent WOD across different probe cards

<u>Gen 3</u>

- Higher gram force Small delta between
- OD1 and OD2 - Consistent WOD recipe
- can be applied Higher pin resistivity causing IR drop on
- power pins (40% higher)

<u>Gen 4</u>

- Higher gram force
- Small delta between OD1 and OD2
- Consistent WOD recipe can be applied
- Lower pin resistivity

<u>Gen 5</u>

Thicker gold plating being introduced to further reduce overall resistivity on DC power pins

IR Drop Issue

Current measurement of Gen3 (x-axis) vs Gen4 (yaxis) pin type on same samples

IR Drop is contributed by

- Probe needles' characteristic (Resistivity) addressed with lower resistivity needle type
 - Historical data revealed yield loss on voltage sensitive tests reduced from > 40% to <5%
- Poor Contact requires optimized cleaning recipe
 - Cumulated particles over time
 - Oxidation

Probe Card - Sustaining and Handling

 Aggressive cleaning resulted in better yield with the trade off over the needles' life span

Contact Issue – Actual Overtravel vs Programmed Overtravel

Actual Overtravel vs Programmed Overtravel

- Programmed Overtravel: setting on prober UI
- Actual Overtravel: Resultant overtravel considering the deflection of the system (Prober, Bridge Beam, Probe Card Load)
- The study provides additional margin in POT, helps in achieving better contact, lower contact resistance. Improving yield on contact sensitive tests.

Contact Issue – Actual Overtravel vs Programmed Overtravel

Actual Overtravel vs Programmed Overtravel

- Programmed Overtravel: setting on prober UI
- Actual Overtravel: Resultant overtravel considering the deflection of the system (Prober, Bridge Beam, Probe Card Load)
- The study provides additional margin in POT, helps in achieving better contact, lower contact resistance. Improving yield on contact sensitive tests.

Conclusions

- Wafer sort setup with twinning options is a solution to highspeed testing for KGD products with limited loopback capability
- Stable high-volume manufacturing setups are achievable via:
 - Studying the root cause and narrowing down the components leading to setup planarity issue
 - Establishing new S.O.P governing the initial setup and regular production routine
 - Continue collaboration with vendors in exploring existing and new technology to optimize product yield