

3D microprinted probes for testing at sub 20 µm pitch

Koelmans¹, Lin², Wang³, Huang³, Hepp¹, Colangelo¹, Schürch¹ ¹Exaddon, ²Xsquare, ³Premtek

Outline

- Introduction: µ3D printing
- Objectives: µLED testing
- Methods: core-shell & manufacturing process
- Results: probe testing & simulation
- Discussion
- Conclusion
- Follow-up work

Introduction to µ3D printing

render

- 3D print with a 500-nm-wide nozzle
- Nanopositioning stages
- Micrometer-sized objects
- Template-free
- Local electrodeposition
- Print pure copper

Motivation for µ3D printing in testing

- 3D design freedom
- High material quality

Quick reconfiguration of probes

- Template-free process
- Print directly on space transformer
- Automated process
 - Accurate dimensions probe printing
 - Seamless merging with contact trace

Koelmans / Hepp

Initial case: µLED

µLED is an upcoming technology

- Wearables, smart devices, etc.
- CAGR 82%*
- Challenge: small-pitch probe arrays
 - 18.5 μm / 35.5 μm (provisional)

render

* Markets and Markets Research Private Ltd. Jan. 19, 2023 Koelmans / Hepp 4th Annual SWTest Asia | Hsinchu, Taiwan, November 2-3, 2023

5

optical

µLED testing principle

Koelmans / Hepp

µ3D printing results

optical

- Copper probes
- Up to 128 probes per array
- FR4 Printed Circuit Board (PCB)

Koelmans / Hepp

Core - shell

Print copper

- Conductivity: 87% of bulk^[1]
- Yield strength: 0.4 to 1.0 GPa^[2]
- Coat with nickel for strength:^[3]

[1] Schürch *et al.* Materials & Design, 2023.
[2] Ramachandramoorthy *et al.* Appl. Mat. Today, 2022.
[3] Jain *et al.* Materials & Design, 2023

Koelmans / Hepp

Quality inspection by Focused Ion Beam

- Void-free materials
- Seamless layer merging
- Diameters (128-probe array)
 - Cu: 8.6 ± 0.5 μm
 - Cu / Ni: 21.9 ± 1.5 µm

Manufacturing process

Koelmans / Hepp

Results: force and resistance

Koelmans / Hepp

Longevity

- Tip wear <10 µm for 250k touchdowns
- Tests done on Au sputtered wafer
- Compatible with standard cleaning (ITS)

Scrub length

Scrub length at 50 µm overdrive (OD)

- Measured: 13.2 µm (mean)
- Simulated: 13.5 μm

Overdrive (μm) Scrub length (μm) 25 7.8 40 11.5 50 13.5

simulated by FEM

Koelmans / Hepp

Z planarity and XY position in array

Analysis on 128-probe array:

- Z-planarity: $\pm 1.4 \mu m$
 - Space transf.: \pm 1.0 µm
 - Printing: $\pm 0.1 \,\mu m$
 - Coating: $\pm 0.3 \,\mu\text{m}$

• XY position accuracy

- $\Delta X: < \pm 1.5 \,\mu m$
- $\Delta Y: < \pm 1.5 \,\mu m$

top view SEM

In situ mechanical testing

- Measure the effective spring constant (k_{eff})
- Study probe deformation and failure
- Calibrate Finite Element Model simulations

in situ SEM

Cu / Ni with a 20-µm-diameter: $k_{eff} = 125$ N/m (0.32 gf/mil)

Due to Ni coating: - k_{eff} is 40 times larger - No plasticity for OD < 50 μm

Koelmans / Hepp

Finite Element Method simulations

Calibrated model enables:

- Designing complex geometries
 - k_{eff}
 - Scrub length
 - Plasticity onset

Core-shell optimization

- Geometry
- Material
- Layer-stack

Discussion

- Array size to increase (128 to 256 probes)
- Optimize coating material and stack
 - For longevity (creep, wear)
 - Larger temperature range
- Optimize space transformer
- Probe station for fine-pitch
 - 'Chicken & egg' situation?

Conclusions

We introduced µ3D printing for testing

- Fine pitch, below 20 µm demonstrated
- Quickly reconfigure without template changes
- High-precision µ3D printing on variety of space transformers
- Prototype ready for µLED testing
- Many other applications are possible
 - Design process established with a Finite Element Model
 - Use the potential of µ3D printing to create even finer probes

Follow-up work

40 x 40 array contact needles 25 µm pitch (2D)

μLED testing on polyimide membrane 18.5 μm / 35.5 μm pitch

Micro bump contacting

Thank you!

Questions? Comments?

Meet us at booth #215
 E-Mail: <u>hello@exaddon.com</u>
 Web: probes.exaddon.com

Koelmans / Hepp

BACKUP SLIDES

µ3D printing process

- The metal printing is conducted within an electrochemical cell
- The ion ink is delivered via a microchannel inside the cantilever
- Pressure controller regulates the air pressure propelling the electrolyte
- A potentiostat regulates the voltages required for deposition

4th Annual SWTest Asia | Hsinchu, Taiwan, November 2-3, 2023

Voxel-based printing

Dynamic phase:

- When deposit reaches tip \rightarrow trigger
- A voxel is completed, retract tip
- Height of the voxel is now known

Stationary phase:

- Probe dispenses the metallic ions
- Metal growth occurs at the working electrode

The metallic deposit reaches the tip aperture

Ercolano *et al., Adv. Eng. Mater.* 2019 4th Annual SWTest Asia | Hsinchu, Taiwan, November 2-3, 2023

Space transformer materials

- PCB FR
- **µPCB**
- Silicon
- Membrane (polyimide)