

Improvement of probe-to-wafer contact resistance for inline automated testing for different technologies

Anton Gavrilov application engineer imec

Activities and specifics of imec

Advanced semiconductor scaling

Increased

performance

Increased

complexity

Reduced cost reduced power

Automotive

RESEARCH & Constant of the second sec

Energy

Activities and specifics of imec

o o c

KEYSIGHT 4080 Serie

AMSIMEC – automated measurement systems imec

- Currently >50 probers
- Almost all models of semi- and autoprobers through many years

Labs:

- Generic
- High power
- Photonics
- Wafer level reliability

5th Annuar SWTest Asia | Fukuoka, Japan, October 24 - 25, 2024

Problems and goals

Problem statement:

High contact resistance between probe tips and pads on a wafer has influence on measurements of "low resistance" devices which need to be measured in CR.

How: Change probing solution

Goal:

Make damage free, reproducible, reliable wafer contact with good characteristics, processed in "standard" and experimental way with gridded pads during the inline measurements.

Questions:

- Good characteristics
- Gridded pads
- Reproducibility
- Reliability
- Damage free

Input:

- Inline measurements
- Gridded pads
- Dielectric coating
- Experimental wafers

Overview

- Problem cases and criteria of success
- Methodology
- Results and challenges
- Follow-on work and questions

Shorted Pads	Wha ⁻	t are g	ood	C	ha	rac	ct	eri	isti	ic	S _	dao to	contor
13 12	Good result	High r	esistance	e	Disba	alance		Bad	tip		E	distrib	-center oution
14 11	Tip R, Ohms Tip	2 411	411		0.82	0.97		1.37	1.51		324	361	3.71 4.37
		2 264	264		0.73	1.13		1.18	2.07		284	338	2.51 3.03
		264	264		0.74	2.58		1.17	2.03		309	334	2.75 2.55
16 9 1 6		264	264		0.69	1.39		1.1	1.73		309	341	2.75 4.64
17 8		264	264		0.65	2.27		1.08	1.58		291	322	2.36 3.3
art art		264	264		0.64	2.9		1.05	1.67		286	308	2.28 2.42
0 18 7		264	264		0.69	1.26		1.11	2.96		286	322	2.22 3.05
		264	264		0.68	2.97		1.11	2.45	\rightarrow	273	372	2.45 2.97
	20 0.75 0.85 5	264	264		0.72	2.84		1.2	4.88	/ [284	359	2.62 5.6
20 5		<mark>264</mark>	264		0.71	3.25		1.2	3.54		311	398	2.62 3.76
21 4	22 0.70 1.02 3	264	264		0.69	2.23		1.25	17.05		307	459	3.04 3.78
	24 107 116 1	410	410		0.76	1.75		1.48	4.35	×	329	449	8.08 8.71
<mark>22 3</mark>					1	† /					Edge	e die	Center die
23 2	 No left/right hal 	ves difference											
	Low mean value	e		Mea	an, ma	iximum	nano	d mini	mum	alue	s are r	not end	ough
24 1	• No peaks → define FOM												
Left Right	 Small center/co 	rners differenc	е										

• Small center/corners difference

half

half

5th Annual SWTest Asia | Fukuoka, Japan, October 24 - 25, 2024

What are good characteristics

To consider probecard like "accepted" 5 wafers should be accepted

Gridded pads and reproducible measurements

Let's assume we have equal wafers. We set some threshold value (red) and take some margin (orange). When we reach orange line cleaning is needed

Reproducible contact = proper method on equal wafers

What is reliable and damage free

Wafer+Prober system full of variations:

Wafer variations

- Layout
- Dielectric thickness
- Metal+Diel hardness
- Planarity
- ...

Technology + Design

lell	i iuttor variation	15.
	Prober variations	
	Probecard	
	Positioning	
6	Overtravel	
	Cleaning	
	•	
	Testing	

Reliable contact = no dependance on process variation

Are we alone?

In-line probing of bare copper pads, Intel, Texas Instruments, Jerry Broz, Chrissie Manion, Rey Rincon, SWTW 2000, 14th of June

Tungsten probes Alloy probes TILLET CONTENTS 111111111111111111111111 **Beryllium-copper probes** FF111511P 111111

First measurement results

First reproducibility check

Several iterations for cleaning with presented cleaning materials

Fresh, used and cleaned tip of probecard

First reliability check

Input

Mean for 3

wafers

0.94

0.14

0.033

1.33

Cres_{mean}, Ohms

 σ

 k_{h1h2}

Cres_{max}, Ohms

- 3 experimental wafers type A
- Gridded pads
- 330 touchdowns per wafer •
- 24 pins on probecard • Summary:
- 990 touchdowns
- 23760 data points

	Percentage of good tests						
	Wafer 1	Wafer 2	Wafer 3				
<i>Cres_{mean}</i>	100%	100%	100%				
σ	96%	91%	96%				
k_{h1h2}	100%	100%	100%				
Cres _{max}	99%	98%	99%				
Total	95%	90%	94%				

Criteria of good test: $Cres_{mean} \leq 5 \ Ohms$

 $\sigma \leq 1.5$

 $k_{h1h2} = \le 0.2$

 $Cres_{max} \leq 8 \ Ohms$

Criteria of good wafer: 80% of tests are good

After 2	2 more wa	afers of t	ype A p	robecard
	was consi	dered like	e accept	ted

5th Annual SWTest Asia | Fukuoka, Japan, October 24 - 25, 2024

Particles generation

Automated check of particles > $1\mu m$

Pre-measurements: 5246 defects Baseline: 4622 defects

330 shorted pad tests x 24 needles \rightarrow >**7920** adders **expected** because of scratching

Post-measurements: 6075 defects Total number of adders 1453

> Better electrical results achieved with more gentle contacting!

Challenging wafers

5th Annual SWTest Asia | Fukuoka, Japan, October 24 - 25, 2024

On-wafer distribution

Summary

S

sand

thou

points,

Measured

New probecard:

- Improvement in contact resistance of standard and experimental wafers
- Less pad damage •
- Less outliers •
- **Better uniformity**
- **Better electrical characteristics**

Old PC New PC 99.5% 51.92 7.48 97.5% 36.28 5.53 Overall performance 90% 1.42 17.52 5.34 75% 1.23 2.06 50% 1.10 New probecard Old probecard Mean 6.14 1.43 1000.00 9.71 Std Dev 2.22 100.00 114360 630042 Ν 10.00 1.00 0.10 0.01 0.00 6.75 0.75 1.5 2.25 .75 0 \mathbf{m} 4.5 .25 9 7.5 .75 8.25 σ σ LO \mathbf{m} Cres, Ohms

Roadmap

Still challenging:

- Research nature doesn't allow to collect big statistics on same types of wafers
- One probecard fits all technologies
- Cleaning strategy for different BEOL materials

Next steps:

- Optimize cleaning: new material + touchdowns
- Wafers with exotic materials
- Other overdrive, double touch, undertravel
- Optical inspection procedure and criteria
- Statistics

Thank you!

SW Test Asia 2024 chairs, Steering Committee and coordinators

Especially Jerry BROZ, Masatomo TAKAHASHI and Haruko YOSHII

for invitation, opportunity to present and support

Participants and speakers

for attention and interesting presentations

imec

Especially my colleagues Geert GOUWY, Marc Van DIEVEL and my manager Gregor VERCAIGNE

For the great teamwork and ability to be a part of the team